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ABSTRACT

The subject of this paper is the buckling behavior of thin

bar stiffeners attached to plates which are subjected to normal

pressure loadings. The stiffeners are mathematically modeled by

a nonlinear beam theory recently derived. An analytical solution

is obtained to the beam buckling equations. The curvature of the

centerline along the beam's base at the buckling load is

expressed in terms of the beam's thickness, height, and

rotational stiffness. Analytical results are compared with an

experiment recently performed.
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I. INTRODUCTION: STATE OF THE ART

Stiffened plates and shells are a basic structural component

of submarines, ships, and aircraft. These structures are

designed with generous safety margins against overall collapse

triggered by frame yielding or trivDing. Tripping is a lateral

torsional buckling occurring in flexurally stiff frames which

have low lateral rigidity. The object of analytical work is to

determine design criteria to inhibit tripping at any stress less

than yield. Tripping reduces structural integrity and may

initiate failure of the entire structure by general buckling.

Surprisingly little material exists in the literature on the

subject of the lateral instability of stiffeners welded to

continuous plating. There are few studies based on theorie ,

simple enough to have analytical solutions. Earlier work is

summarized by Bleich (1952). Kennard (1959) studied initially

curved stiffeners. Adamchak (1979,1982) pointed out the

importance of rotational constraint on the buckling load. Van

der Neut (1982) developed a theory for a Z-stiffened panel in

compression that could be solved with a pocket calculator. More

accurate codes requiring powerful computers were developed by

Smith (1968) and Wittrick (1968) based on folded plate analysis.

Bushnell (1985) also modeled the rings on cylindrical shells as

plates.

In the past there have been few experiments in which

stiffeners attached to shells have been allowed to buckle. Smith

(1975) tested the compressive strength of ship grillages.

2
4A J

e4



no " _x Wr WWWI.Wlr' -yvw '__zc.. .1 .i. *.V - 'g ' --L I- .

Recently, at the Naval Postgraduate School, a series of stiffened

plates have been subjected to static or dynamic pressure loads

sufficient to cause tripping. Each plate was rectangular in

cross section and fixed at its boundaries. A single narrow-

flanged stiffener was attached at its base to the center of each

plate and free at its ends. Measurements were made of strains

and deflections versus pressure, as reported by Budweg and Shin

(1987). At low pressures a plate-stiffener simply bowed out

symmetrically, but above a critical buckling pressure the

stiffener rotated about its base and deformed unsymmetrically

(see Fig. 1).

In this paper we mathematically simulate these experiments.

Our analysis is based upon the following assumptions:

(i) The stiffener is rectangular in cross section with
t 2  

2

thickness t, height h, and length Y. -- and -- are
h Z

negligible compared to 1.

(ii) The reference line along the center of the stiffener's

base undergoes a vertical displacement w and negligible

horizontal displacement. K is negligible compared to 1.
h

(iii) Each stiffener cross section does not distort in its

plane and remains normal to the reference line.

(iv) The deformation normal to the plane of a stiffener cross

section is equal to the product of the warping function

of the Saint-Venant torsion theory times the twist of

the stiffener.

(v) The stiffener material is linear, isotropic and elastic.

3



(vi) The plate does not participate in the buckling of the

stiffener. !

(vii) At the buckling load the curvature of the reference line

is a constant.

Assumptions (i)-(v) are specializations of the ones

previously used in deriving a refined nonlinear beam theory used

to model helicopter rotor blades (Danielson and Hodges, 1987,

1988). Hence we can use that theory for the present problem.

Assumptions (vi)-(vii) uncouple the beam problem from the plate

problem. Thus the mathematical model reduces to one dimension,

in contrast to previous analyses in which the stiffener-plate was

modeled by two-dimensional plate theories. As a consequence of

the simpler formulation, we will be able to obtain an analyticaT

solution to the equations.
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II. NONLINEAR BEAM EQUATIONS

In this section we reproduce relevant formulas from our

previous papers (Danielson & Hodges, 1987,1988), applied to the

present problem. We retain the same notation as in these earlier

papers.

The centerline along the base of the undeformed beam is

called the reference line r (refer to Fig. 2). The Cartesian

coordinates of a point in the undeformed beam are denoted by

(xl,x2,x 3 ), where x, denotes distance measured along r from the

middle of the base, x2 denotes distance measured normal to r

parallel to the plate, and x3 denotes distance measured normal to

the plate from the base. At each point an orthogonal reference

triad (br,br,br) tangent to the coordinate curves is definedk-

r
with b, parallel to the x, axis. The position vector to points

in the undeformed beam is then given by

r = xibf (1)

(The repeated index i is summed from 1 to 3.)

After deformation the locus of material points on the

reference axis is denoted by R. Now at each point along R define

an orthogonal reference triad (b ,b ,b3) tangent to the deformed

coordinate curves. Also, let b denote an intermediate unit

vector in the direction of the principal normal to R. It follows

from assumptions (i)-(iii) that

.5



R r r

b= bi+ w'b 3

r r

R r+(2)b2 cos 4 b2 sin e b

= -snG 4+ Cos b

b3 sineb2 e t

R
Here 0 is the angle of rotation between b and b3 , and primes

denote differentiation with respect to xl. Expanding cos e and

sin e in powers of 0 and retaining up to quadratic terms (higher

order terms are not needed for the buckling analysis), we obtain

from (2)

bR r + rb2 -w'eb 1 + (1--,~)b2 b3

(3)
r 2 r e2.

b3 -(1--) W'bl b2 +(1-2b

2.

The curvature vector of the deformed beam is defined by

K =KibR 111 R b) 4

The components of the curvature vector are obtained from (2)-(4):

K2 = -w"w + (5)

K3 = Ww e

6



It follows from assumptions (i)-(iv) that the position

vector to points in the deformed beam is given by

R=x1 14r + wb r + xbR+ xbR + x~3_,bR (6)
1x3b 2  x~ 3  x~ ' 1

Simplified expressions for the extensional strain-(,l and

transverse shear strains y1 2 and y13 are derived in our earlier

papers. Below we reproduce equations (9)-(10) from Danielson and

Hodges (1988), specialized to the present problem:

Y= El+ E23- E32+ ±242 +:

' 12 = E2- 1 Ell 3 (7

' 13 E1 + 1El

El X3Ic2  X2 x 3 + x2 x3 (3"

_x K + X01+xX6K
E1 3 1 30 + x 2 x 3 0

X 2K 1+ x 20' -X 2x 3 'K2
E113 2 2 (8)

-X2 K + x20 + Xxe
2 1 2 23 2

-X K -x 0 + X x e~ K3 1 3 2 3 3
3 2
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Substituting (5) and (8) into (7), and neglecting smnall and

higher order terms, we obtain

2 2
Yl1= -x 3w" + x2x 3 e" + 3  - x2w"1

e2 2 2.-x w"e x x3w"( ' ) .
+ 3 2 + 2 2

-x2w"e x2xe, 0"

Y12= 2 + 2 (9)

x xie w6 x2 x2wile'e"
2 2 3 2 313 ~ w ' ,~e +~ 2 4

..

The other strain components (Y2 2 ,Y 2 3 ,Y 3 3 ) turn out to be

negligible in the strain energy expression.

It follows from assumption (v) that the strain energy of the

stiffener is

St 2
2 2" h E 2 2y12  

2 71 3
Ws = f f f (11 + l+v + v)dx3 dx2 dxI  (10) "

z t 0
2 2

where E is Young's modulus and v is Poisson's ratio. Substitut-

ing (9) into (10), performing the x2 and x3 integrations, and

neglecting small and higher order terms, we obtain

w = f Eh3t (w") (1)

2

Here Q denotes the terms in Ws which are quadratic in C- and its

derivatives:

8
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E t3 h 2 t~Y 2 t3 h (61)21 ~
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III. BUCKLING EQUATIONS

We base our buckling analysis on the energy criterion of

elastic stability. This criterion and its application are

explained by Timoshenko and Gere (1961), Danielson (1974) and

Wempner (1981).

The total potential energy of the plate-stiffener

combination is the functional

P[u,e] = Wp[u] + Ws[w", ] - V[u] (13)

Here u denotes the displacement of points on the top surface of

the plate; note that the vertical displacement of the plate along

the reference line is equal to w. Wp denotes the strain energy

of the plate; Wp is a functional of u. Ws is the strain energy

of the beam, given by (11)-(12); Ws is a functional of the beam

curvature w" and rotation e. V is the work of the external

loads, which is the hydrostatic pressure times the volume between

the undeformed and deformed plate; V is a functional of the plate

displacement field u only.

The Rrebuckling equilibrium state I in the plate-stiffener

is denoted by (u,w",e =0). The potential energy in the

prebuckling state I is thus

PI = Wp[u] + Ws[W",0] - V[u] (14)

10 ]
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Invoking assumption (vi), we consider a small deviation

e; 0 from the prebuckling state of the plate-stiffener. The

potential energy in this alternate state II is

PII = Wp[U] + Ws[W',Gj] - V[u] (15)

From (11), (14) and (15), the change in potential energy is thus

PII - P, = Q[w",e] (16)

According to the energy criterion of elastic stability, when the

curvature reaches a critical value w", there exists a bifurcation

buckling mode satisfying

Q[w",G] = 0, Q[w",6i] > 0 (17)

As a consequence of (17), the buckling mode is determined by the

variational equation

6 = 0 (18)

Taking the variation of (12), and integrating by parts, we

obtain

Et3h 3  2 2 h -15th64 w  A' =

6Q 36(l"6 f e 0 (19)
z z_ 1v
2 2

.p.



In order for (19) to vanish for arbitrary 6e,, must satisfy the

differential equation

"' (9hw" 6 -
+ t2 ) ' = 0 (20)

t (1+v)h

and the boundary conditions

= "(- -) =0 (21)

In order to obtain an analytical solution to the

differential equation (20), we invoke assumption (vii). The

solution to the eigenvalue problem (20)-(21) is then

A cos[ 
2n7Txi ..

' r (22)
(2n+l)

B sin [ .

where A and B are arbitrary constants and n is any positive

integer. Furthermore, the curvature is

2t2  + n22t
w3 -+ £2 (23)

3(i+v)h 9h

For small values of n, the underlined term in (23) is

negligible. Hence the wavelength of the buckling mode is not

uniquely determined. The critical curvature of the reference

line at the buckling load is thus

12
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- 2t2 (24)

3 (1+v) h

The maximum value of the compressive strain at the buckling

load is obtained by setting e = 0 and x3 = h in the first of

equations (9):

lyllmax = hw" (25)

5%

"

s-

133



IV. ROTATIONAL CONSTRAINT

In the preceding analysis the beam cross section was allowed

to rotate freely about the reference axis (simple support). In

this section we determine the effect of rotational constraint on

the buckling load. The method used is explained by Timoshenko

and Woinowsky-Krieger (1959) and Ugural (1981).

Resistance to rotation can be modeled by considering the

base of the beam to be supported by a foundation, itself assumed

to experience elastic deformation. We see from (3) and (6) that

a point on the base of the beam undergoes a vertical deflection

(w + x2 ) . The foundation reaction forces are assumed to be

K(w + x2 0). Here K is a constant called the modulus of the

foundation and has the dimensions of force per unit area of thd

base per unit deflection. The strain energy Wf due to

deformation of the foundation is then

z t
K 2 2 2

Wf[W, 0] = 2 f f (w + x2 e) dx 2 dx 1

z t2 2 1

2 Kt3  2
=--2 f 2 dx I + 24 / 2 dx I  (26)

It follows from the arguments in the preceding sections that

the underlined term in (26) must be added to the expression (12)

for the quadratic terms in the change of potential energy Q.

Then solving (17) for the critical curvature, we obtain N
14
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(6")2 + 3h 2 + Kt3 e2 }dx
Z 4 18 3(1+v) (2') 1

Wit < 2 (27)

Eth 4  f2 (e)2
8 Z
2

We assume that the buckling mode can be approximated by our

previous solution (22), which is exact when K = 0:

2nTx 1

e = A sin [- -- -1  (28)

where A is an arbitrary constant and n is any positive integer.

Substitution of (28) into (27) then yields bounds on the critical

curvature:

2 2 2 2 2
2t 2t 4t Tr 2 C(

< ~ ~ < + -(n +(9
3(l+v)h 3 -< - 3(l+v)h 3  9 

n

where

C 3 ' (30)c---

The best estimate for w" is obtained by choosing the value

of n which minimizes the underlined term in (29). When C < 2,

the minimum value occurs for n = 1, and the underlined term is

negligible. When C > 2, the minimum value occurs for n > 1, but

is still negligible until n2 is large. When n2 is large, we can

treat n2 as a continuous variable and set the derivative with

respect to n2 of the underlined term equal to zero, which results

15
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in a value of n2 = C. Substitution of n2 =C and (30) into (29)

then yields the best bounds

2t2 < 2 2 2t23Kh(31)

3(1+~h3 3(1\))h3 9h3
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V. EXPERIMENT

In this section we compare our formulas with an experiment

performed at the Naval Postgraduate School. The experimental

results are taken from Budweg (1986) and Budweg and Shin (1987).

A rectangular plate with a narrow-flanged stiffener was

machined out of a single large blank of 6061-T6 aluminum. The

dimensions of the resulting plate and stiffener are shown in Fig.

3. A strongback was bolted to the test panel. The test panel

cavity was gradually filled with water. Measurements of the

strains and deflections at the bottom of the plate, and the

strain at the top of the stiffener, were taken at various

hydrostatic pressures.

The experimenters judged that tripping of the stiffener

initiated at a deflection of about three plate thicknesses, when

the curvature of the plate at the stiffener location and the

compressive strain at the top of the beam was approximately .013.

The plate was loaded to a maximum vertical deflection of about

four plate thicknesses. It was observed that the vertical

deflection of the plate was always symmetric about the plate's

center lines. After release of the pressure there was permanent

plastic deformation remaining in the plate, but no deformation of

the stiffener out of the vertical plane.

Let us now calculate the critical curvature obtained from

our analysis which ignores rotational constraint. Substituting

v= .33 and the dimensions of the stiffener cross section shown

in Fig. 3 into the formulas (24)-(25), we predict

17
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w= 2 (.l125) 2 1nhl
31 3(. 25) = .0055 (units of inch3(l.33) (1.125) 3

(32)

l¥ll'max = (1.125) (.0055) = .0062

The predicted critical curvature and strain are less than half of

the measured values .013.

Let us examine the factors we have neglected in our

analysis, to see which could create a significant increase in the

predicted buckling load:

(i) The beam cross section was not rectangular and the

neutral axis in bending was not at the top of the plate.

However, fitting the cross section with a more accurate 1w

T-shape, and assuming the beam is 15/16" high d

(neglecting the fillet at the base of the beam), we

obtain a critical curvature of only .0061.

(ii) The prebuckling state of the stiffener was nonlinear so

larger vertical and nonnegligible horizontal

displacements occur. But replacing assumption (ii) by

the less stringent assumption that w/h < 1, and

repeating the derivation in section III retaining

nonlinear terms in w, we find no substantial change in

(32). .

(iii) The critical curvature f " was not constant. However,

the experimental measurements showed significant

variation in W" only near the ends of the stiffener.

18 j
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(iv) The structure had geometrical and material

imperfections. But imperfections usually lower the

buckling load.

(v) The beam cross section deforms in its plane. But

inplane extension and contraction have negligible

effects on the critical curvature. And allowing the

cross section to bend cannot increase the buckling load.

(vi) The stiffener was partially restrained by the plate

against rotation at its base. Remembering the result

(31) of section IV, we must conclude that the rotational

restraint is large enough to be a significant factor in

the tripping of the tested plate-stiffener.

We can estimate the magnitude of the rotational restraint by

solving (31) for K:

K > E (' 9 lw+ (33)
K 3h~ (33)1+

Substituting w" = .013 and the beam dimensions into (33), we

obtain

K > 3E (34)

19



VI. CONCLUSION

As a consequence of the theoretical formula (31), we can

draw the following conclusions about the tripping behavior of

stiffened plates:

1. The critical curvature V' does not depend on the length

of the beam.

2. Beams with smaller thickness to height ratios t/h trip at

smaller curvatures.

3. The tripping point depends very much on the restraining

stiffness K.

Our mathematical analysis has treated only the stiffener and

has not considered its interaction with the supporting structure.

The analysis could be improved by solving the prebuckling problem

for the plate-stiffener, a task which is best done on a computer.

Additional kinematical and material nonlinearities could be

included. The pressure which causes tripping could be calculated

and compared with experiment.

Further experiments need to be done. It was difficult to

determine when and if tripping occurred from the measurements

that were made. Future experiments should allow visual

inspection of a stiffener while it is buckled. Additional

experimental measurements could be made to determine the

rotational stiffness.

The advantage of the present methods is that they lead to

simple analytical formulas which reveal the dependence of the

buckling point on geometrical parameters. It would be

20
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interesting to see if these analytical techniques could be

'S'Sapplied to other problems, such as the buckling of initially

curved shells with stiffeners of T or Z cross sections.
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FIGURE CAPTIONS

Figure 1: Stiffener shapes when plate is under various pressures

Figure 2: Geometry used in mathematical analysis

Figure 3: Dimensions of experimental model
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